Skip to main content

Acid Mine Drainage



Acid mine drainage, acid and metalliferous drainage (AMD), or acid rock drainage (ARD) is the outflow of acidic water from metal mines or coal mines.

Acid rock drainage occurs naturally within some environments as part of the rock weathering process but is exacerbated by large-scale earth disturbances characteristic of mining and other large construction activities, usually within rocks containing an abundance of sulfide minerals. Areas where the earth has been disturbed (e.g. construction sites, subdivisions, and transportation corridors) may create acid rock drainage. In many localities, the liquid that drains from coal stocks, coal handling facilities, coal washeries, and coal waste tips can be highly acidic, and in such cases it is treated as acid rock drainage. This liquid often contains toxic metals, such as copper or iron. These, combined with reduced pH, have a detrimental impact on the streams aquatic environments.

The same type of chemical reactions and processes may occur through the disturbance of acid sulfate soils formed under coastal or estuarine conditions after the last major sea level rise, and constitutes a similar environmental hazard.

Historically, the acidic discharges from active or abandoned mines were called acid mine drainage, or AMD. The term acid rock drainage, or ARD, was introduced in the 1980s and 1990s to indicate that acidic drainage can originate from sources other than mines. For example, a paper presented in 1991 at a major international conference on this subject was titled: "The Prediction of Acid Rock Drainage - Lessons from the Database" Both AMD and ARD refer to low pH or acidic waters caused by the oxidation of sulfide minerals, though ARD is the more generic name.

In cases where drainage from a mine is not acidic and has dissolved metals or metalloids, or was originally acidic, but has been neutralized along its flow path, then it is described as "Neutral Mine Drainage", "Mining-Influenced Water" or otherwise. None of these other names have gained general acceptance. 

Sub-surface mining often progresses below the water table, so water must be constantly pumped out of the mine in order to prevent flooding. When a mine is abandoned, the pumping ceases, and water floods the mine. This introduction of water is the initial step in most acid rock drainage situations. Tailings piles or ponds, mine waste rock dumps, and coal spoils are also an important source of acid mine drainage.

After being exposed to air and water, oxidation of metal sulfides (often pyrite, which is iron-sulfide) within the surrounding rock and overburden generates acidity. Colonies of bacteria and archaea greatly accelerate the decomposition of metal ions, although the reactions also occur in an abiotic environment. These microbes, called extremophiles for their ability to survive in harsh conditions, occur naturally in the rock, but limited water and oxygen supplies usually keep their numbers low. Special extremophiles known as Acidophiles especially favor the low pH levels of abandoned mines. In particular, Acidithiobacillus ferrooxidans is a key contributor to pyrite oxidation.

Metal mines may generate highly acidic discharges where the ore is a sulfide mineral or is associated with pyrite. In these cases the predominant metal ion may not be iron but rather zinc, copper, or nickel. The most commonly mined ore of copper, chalcopyrite, is itself a copper-iron-sulfide and occurs with a range of other sulfides. Thus, copper mines are often major culprits of acid mine drainage.

At some mines, acidic drainage is detected within 2–5 years after mining begins, whereas at other mines, it is not detected for several decades. In addition, acidic drainage may be generated for decades or centuries after it is first detected. For this reason, acid mine drainage is considered a serious long-term environmental problem associated with mining.

Comments

Popular posts from this blog

History of Fuel Cells

Although fuel cells were not investigated much during the 1800s and 1900s, the credit for the invention of the first fuel cells goes to William Grove. Intensive research on the topic began in the 1960s with NASA and only recently has commercialization of the technology begun to be conceivable. The image below is a summary of the history of the fuel cells. Before William Grove had invented the first fuel cell in 1839, William Nicholson and Anthony Carlislie came up with the process of using electricity of break water into hydrogen and oxygen in 1800. Willian, then, based his first fuel cell on their discovery. The device, called the gas battery or "Grove cell", was a combination of " electrodes in a series circuit, with separate platinum electrodes in oxygen and hydrogen submerged in a dilute sulfuric acid electrolyte solution" and it generated 12 amps of current at about 1.8 volts.  NASA began research on fuel cells for Project Gemini, which employed th

Solar Cells Losses and Design Part 1

We have discussed some important properties of light and characteristics of the radiation of light by our sun. In this post, we will focus on converting that light to electrical energy. This is done using the photovoltaic effect. Photovoltaics covers the direct conversion of sunlight into electrical energy, by a semiconductor material. The term photovoltaics is derived from the Greek word ‘phos’ which means light, and volt, which refers to electricity, specifically voltage. Volt is a reference to the Italian physicist Alessandro Volta, who invented the battery photovoltaic effect that was discovered in 1839, by the French physicist Emond Becquerel. At the age of 19 Becquerel created the first photovoltaic cell by illuminating platinum electrodes, coated with silver chloride in an acid solution. This device was the first to convert light into electricity. The photovoltaic effect occurs through the generation of a potential difference at the junction of two different material

Black Carbon is Found in the Amazon River after Forest Fires

In addition to the tracks of destruction in the forest, the fires in the Amazon leave traces in the Amazon River and its tributaries. Incomplete burning of tree wood results in the production of a type of carbon - known as black carbon - that reaches Amazonian waters in the forms of charcoal and soot and is transported to the Atlantic Ocean as dissolved organic carbon. An international group of researchers quantified and characterized, for the first time, the black carbon that flows through the Amazon River. The results of the study, published in Nature Communications magazine, showed that most of the material transferred to the ocean is "young," suggesting that it was produced by recent forest fires. "We found through radiometric dating analysis [a method that uses the radioisotope of natural carbon-14 occurrence to determine the age of carbonaceous materials up to about 60,000 years] and molecular composition that the largest proportion of the black carbon we found