Skip to main content

Heat Management in Fuel Cells

For a fuel cell to run efficiently, there needs to be proper control of its temperature and heat generation. Some fuel cells work well in room temperature, but others require temperatures as high as 1000 ÂșC, and any value outside of the accepted range results in lowered efficiency of the device. Higher temperatures lead to faster kinetics and voltage, and lower temperatures cause shorter warm-up times, lower thermodynamical stresses and retardation of corrosion and other temperature-dependent processes. For fuel cells, higher temperatures also mean greater vaporization of the liquid water and, as a result, more of the waste heat becomes the latent vaporization heat. 

The temperature profile in a fuel cell is ever-changing, even when the flow rate of the gases is constant. That happens because of the transfer of heat and phase change of some reactants. The accurate prediction of the temperature and heat distribution is essential to determine temperature-dependent parameters and rates of reaction and species transport. Between the solid surface and the gas flow, there is the occurrence of convective heat transfer, and conduction heat exchange takes place in the solid and porous materials.

The amount of produced power, the fuel cell reactions and heat loss are important variables to be considered in the total energy balance. The balance differs according to each fuel cell type due to the different reactions that occur in the designs. The overall energy balance, however, can be summarized to "enthalpy of the input gases equals the enthalpy of the products leaving the fuel cell plus the generated heat and power, and the heat lost to the surroundings".

One particular problem is that for small stacks of fuel cells or single stacks, the relatively large surface area means that heat dissipation to the surroundings through convection and radiation plays a more relevant role to the energy balance than in other settings. 

Since heat is generated in fuel cells, another important topic to consider is cooling. This process can achieved in many ways. For example, passive cooling can be achieved with fins and heat sinks, dynamic cooling can be obtained with turbine reheaters and metal hydride containers. Fuel cell stacks usually need cooling systems to keep the homogeneity of the temperature distribution across the cells. On the other hand, small fuel cells may not need any cooling strategy.

Source: http://www.fuelcellstore.com/blog-section/fuel-cell-heat-transfer-management

Comments

Popular posts from this blog

Photovoltaics: Band Diagram

In the previous post we discussed silicon, which is the most used material in photovoltaics. In this post, we introduce the band diagram, for which we will use silicon as an example. We will start our discussion of the band diagram with the Bohr model of the silicon atom. In semiconductor materials the outer shell of the atom, which is called the valence shell, is not completely filled. The outer shell of silicon contains 4 out of the possible 8 electrons, which we call valence electrons. As we discussed in the previous post, each silicon atom in a crystalline structure is bonded to four other silicon atoms. The bonds between the silicon atoms are called covalent bonds. These bonds actually consist of two valence electrons that are shared by two silicon atoms. All valence electrons are fixed in the lattice, forming covalent bonds, and are therefore immobile. However, at a temperature above absolute zero, thermal energy is supplied to these miconductor and some of the vale...

Watching videos on the Internet also harms the environment

Surprisingly, even the videos we watch on the Internet have an impact on the environment. A new report indicates that the internet is one of the top "villains" in the digital sector's carbon footprint, which now accounts for 4% of global greenhouse gas emissions. This share could double by 2025, leaving the digital sector on a par with road transport, as energy consumption in this sector is increasing at the rate of 9% per year. Published by the French research website The Shift Project, the report "Climate Crisis: The Unsustainable Use of Online Video" quantifies the impact of Internet video (VoD, "tubes", pornography, social networks and others) on the environment and the global climate. The study shows that, within all Internet data, online videos account for about 60 percent of the stream, or the largest volume of greenhouse gas emissions in the industry, with about 300 megatonnes of carbon dioxide equivalent (tCO2e). Of this total emission,...

I-V Characteristic of a Solar Cell

Now that we know a bit about the physical processes behind photovoltaic energy conversion, let’s take a look at the device that does this, a solar cell. In the next few posts, we will go deep into all the operating principles of solar cells. We will discuss the semiconductor physics and optics governing their behavior and you will really get a sense of how solar cells work. Nevertheless, let’s start by trying to understand an important aspect for any electrical component, the current-voltage or “i-V” characteristic of the solar cell. Here we see a basic solar cell schematic. There are many different components and layers and you will become familiar with the properties and purposes of all these layers throughout the blog. All you need to know for this post is that a solar cell can take energy from illumination, and convert it into electrical energy in an external circuit. This post’s objective is to answer ‘what’. You will need to go through the rest of the course to u...