Skip to main content

Fuel Cell Charge Transport

Conduction is the process which dictates the transport of charges through the fuel cell layers, except for the membrane. That means that the lack of adequate contact between the diffusion layer, bipolar plates and cooling plates is the cause of most of the ohmic losses outside of the membrane. There is where most of the overall ohmic loss occur. To help solving that problem, either the membrane needs to be made thinner, or its material needs to be more conductive. History and tests given that, have told us that making the membrane thinner is easier than the alternative. The challenge with making the membrane material more conductive balancing that property with its thermal and chemical stability. 

The image below describes the relationship between membrane thickness and local conductivity:

Source:

SPIEGEL, Colleen. PEM Fuel Cell Modeling and Simulation Using MATLAB®Burlington, MA, USA: Academic Press, 2008. 440 p.

Comments

Popular posts from this blog

Photovoltaics: Band Diagram

In the previous post we discussed silicon, which is the most used material in photovoltaics. In this post, we introduce the band diagram, for which we will use silicon as an example. We will start our discussion of the band diagram with the Bohr model of the silicon atom. In semiconductor materials the outer shell of the atom, which is called the valence shell, is not completely filled. The outer shell of silicon contains 4 out of the possible 8 electrons, which we call valence electrons. As we discussed in the previous post, each silicon atom in a crystalline structure is bonded to four other silicon atoms. The bonds between the silicon atoms are called covalent bonds. These bonds actually consist of two valence electrons that are shared by two silicon atoms. All valence electrons are fixed in the lattice, forming covalent bonds, and are therefore immobile. However, at a temperature above absolute zero, thermal energy is supplied to these miconductor and some of the vale...

Watching videos on the Internet also harms the environment

Surprisingly, even the videos we watch on the Internet have an impact on the environment. A new report indicates that the internet is one of the top "villains" in the digital sector's carbon footprint, which now accounts for 4% of global greenhouse gas emissions. This share could double by 2025, leaving the digital sector on a par with road transport, as energy consumption in this sector is increasing at the rate of 9% per year. Published by the French research website The Shift Project, the report "Climate Crisis: The Unsustainable Use of Online Video" quantifies the impact of Internet video (VoD, "tubes", pornography, social networks and others) on the environment and the global climate. The study shows that, within all Internet data, online videos account for about 60 percent of the stream, or the largest volume of greenhouse gas emissions in the industry, with about 300 megatonnes of carbon dioxide equivalent (tCO2e). Of this total emission,...

I-V Characteristic of a Solar Cell

Now that we know a bit about the physical processes behind photovoltaic energy conversion, let’s take a look at the device that does this, a solar cell. In the next few posts, we will go deep into all the operating principles of solar cells. We will discuss the semiconductor physics and optics governing their behavior and you will really get a sense of how solar cells work. Nevertheless, let’s start by trying to understand an important aspect for any electrical component, the current-voltage or “i-V” characteristic of the solar cell. Here we see a basic solar cell schematic. There are many different components and layers and you will become familiar with the properties and purposes of all these layers throughout the blog. All you need to know for this post is that a solar cell can take energy from illumination, and convert it into electrical energy in an external circuit. This post’s objective is to answer ‘what’. You will need to go through the rest of the course to u...