Skip to main content

Effect of Pressure and Gas Concentration in Fuel Cells

The Gibbs free energy changes vary with temperature, pressure and gas concentration in fuel cells. Take into account the following generation reaction:

jJ + kK mM

Where k moles of K react with j moles of J to generate m moles of M. Both the reactants and products have an associated 'activity'. We can call this 'activity' a, aj and ak for the reactants and am for the product activity. When gases behave close to ideal conditions (as is the case with fuel cells), we know that:

a=P/P0

Where P is the pressure/partial pressure of the gas and the standard pressure is P0 (around 0.1 MPa). This simple equation is useful because fuel cells are, in a general way, gas reactors. When dissolved chemicals are involved, the activity can be linked to the molarity or strength of the solution. The case of water in fuel cells is complex to deal with, but in steam form, it can be stated that the activity of water is equal to the partial pressure of water divided by the standard pressure of the steam.

These activities modify the Gibbs free energy change of reaction. When the activity of the reactants increase, the Gibbs free energy becomes more negative (more energy is released). When the activity of the products increase, the reverse effect happens to the Gibbs free energy (less energy is liberated).

Another concept to take note off is the effect on the Electromagnetic Field (EMF). When the activity of the reactants increase, so does the the EMF.


Reference:


LARMINIE, James; DICKS, Andrew. Fuel Cell Systems Explained. 2. ed. West Sussex, England: Wiley & Sons Ltd., 2003. 418 p.
 

Comments

Popular posts from this blog

Photovoltaics: Band Diagram

In the previous post we discussed silicon, which is the most used material in photovoltaics. In this post, we introduce the band diagram, for which we will use silicon as an example. We will start our discussion of the band diagram with the Bohr model of the silicon atom. In semiconductor materials the outer shell of the atom, which is called the valence shell, is not completely filled. The outer shell of silicon contains 4 out of the possible 8 electrons, which we call valence electrons. As we discussed in the previous post, each silicon atom in a crystalline structure is bonded to four other silicon atoms. The bonds between the silicon atoms are called covalent bonds. These bonds actually consist of two valence electrons that are shared by two silicon atoms. All valence electrons are fixed in the lattice, forming covalent bonds, and are therefore immobile. However, at a temperature above absolute zero, thermal energy is supplied to these miconductor and some of the vale...

Watching videos on the Internet also harms the environment

Surprisingly, even the videos we watch on the Internet have an impact on the environment. A new report indicates that the internet is one of the top "villains" in the digital sector's carbon footprint, which now accounts for 4% of global greenhouse gas emissions. This share could double by 2025, leaving the digital sector on a par with road transport, as energy consumption in this sector is increasing at the rate of 9% per year. Published by the French research website The Shift Project, the report "Climate Crisis: The Unsustainable Use of Online Video" quantifies the impact of Internet video (VoD, "tubes", pornography, social networks and others) on the environment and the global climate. The study shows that, within all Internet data, online videos account for about 60 percent of the stream, or the largest volume of greenhouse gas emissions in the industry, with about 300 megatonnes of carbon dioxide equivalent (tCO2e). Of this total emission,...

I-V Characteristic of a Solar Cell

Now that we know a bit about the physical processes behind photovoltaic energy conversion, let’s take a look at the device that does this, a solar cell. In the next few posts, we will go deep into all the operating principles of solar cells. We will discuss the semiconductor physics and optics governing their behavior and you will really get a sense of how solar cells work. Nevertheless, let’s start by trying to understand an important aspect for any electrical component, the current-voltage or “i-V” characteristic of the solar cell. Here we see a basic solar cell schematic. There are many different components and layers and you will become familiar with the properties and purposes of all these layers throughout the blog. All you need to know for this post is that a solar cell can take energy from illumination, and convert it into electrical energy in an external circuit. This post’s objective is to answer ‘what’. You will need to go through the rest of the course to u...