Skip to main content

Effect of Pressure and Gas Concentration in Fuel Cells

The Gibbs free energy changes vary with temperature, pressure and gas concentration in fuel cells. Take into account the following generation reaction:

jJ + kK mM

Where k moles of K react with j moles of J to generate m moles of M. Both the reactants and products have an associated 'activity'. We can call this 'activity' a, aj and ak for the reactants and am for the product activity. When gases behave close to ideal conditions (as is the case with fuel cells), we know that:

a=P/P0

Where P is the pressure/partial pressure of the gas and the standard pressure is P0 (around 0.1 MPa). This simple equation is useful because fuel cells are, in a general way, gas reactors. When dissolved chemicals are involved, the activity can be linked to the molarity or strength of the solution. The case of water in fuel cells is complex to deal with, but in steam form, it can be stated that the activity of water is equal to the partial pressure of water divided by the standard pressure of the steam.

These activities modify the Gibbs free energy change of reaction. When the activity of the reactants increase, the Gibbs free energy becomes more negative (more energy is released). When the activity of the products increase, the reverse effect happens to the Gibbs free energy (less energy is liberated).

Another concept to take note off is the effect on the Electromagnetic Field (EMF). When the activity of the reactants increase, so does the the EMF.


Reference:


LARMINIE, James; DICKS, Andrew. Fuel Cell Systems Explained. 2. ed. West Sussex, England: Wiley & Sons Ltd., 2003. 418 p.
 

Comments

Popular posts from this blog

Photovoltaics: Band Diagram

In the previous post we discussed silicon, which is the most used material in photovoltaics. In this post, we introduce the band diagram, for which we will use silicon as an example. We will start our discussion of the band diagram with the Bohr model of the silicon atom. In semiconductor materials the outer shell of the atom, which is called the valence shell, is not completely filled. The outer shell of silicon contains 4 out of the possible 8 electrons, which we call valence electrons. As we discussed in the previous post, each silicon atom in a crystalline structure is bonded to four other silicon atoms. The bonds between the silicon atoms are called covalent bonds. These bonds actually consist of two valence electrons that are shared by two silicon atoms. All valence electrons are fixed in the lattice, forming covalent bonds, and are therefore immobile. However, at a temperature above absolute zero, thermal energy is supplied to these miconductor and some of the vale...

Petroleum as Fuel for Fuel Cells (FCs)

Petroleum is made of gaseous, liquid, and solid hydrocarbon-based chemical compounds from sedimentary rock deposits around the planet. Crude petroleum, when refined, provides high-value liquid feeds, solvents, lubricants, and other products. Petroleum-based fuels make up almost one half of the energy supply in the world. Simple distillation is enough to make gasoline, diesel, aviation fuel and kerosene out of petroleum. How much is obtained, in terms of fractions, from the crude oil depends on the origin of the supply. When fuel cells are considered, it is important to understand the physical and combustion characteristics of the fuel, as well as its chemical composition (it is this factor that determines the fuel processing type).  Different technologies have to be employed to convert the many fraction types of the petroleum into hydrogen for FCs.  A special case is when the fuel is catalytically converted and generates various trace compounds that may be poisonous...

Physical Description of the Gas Diffusion Layer (GDL)

Porous and electrically conductive material is the kind of material that is used for gas diffusion backings. Usually, the gas diffusion layer is single or composite, and the last means that there is a junction with a micro-porous layer. Water management and electrical properties can be improved with a treatment composed of fluoropolymer and carbon black . Diffusion of the reactant gases to the membrane/electrode assembly are improved with these material types. The structure is made it so that it spreads out the gas to maximize the contact surface area of the catalyst layer membrane. Carbon cloth and carbon paper are the most usually used GDL materials. The purpose of the GDL is to limit the amount of water that reaches the membrane/electrode assembly. Additionally, it helps with the removal of liquid water from the cathode side to prevent excess flooding. One required characteristic for this layer is that it has to be water-proofed so that the layer does not get clogged with wat...