Skip to main content

ABB, Sintef to Test Hydrogen Fuel Cells

Norwegian Sintef Ocean and ABB Marine will use two 30kW hydrogen fuel cells, set up in laboratory to model the operation and control of a complete marine power system in a megawatt-scale propulsion plant.

"ABB and Sintef Ocean are undertaking groundbreaking research to test the viability of fuel cells as an energy source for main ship propulsion. The new research project seeks to provide the answers required for fuel cell technology to be delivered at the scale needed to power commercial and passenger ships," said a press release.

The testing methodology, to be developed at Sintef Ocean’s Trondheim-based laboratory, will use two 30kW fuel cells, set up to model the operation and control of a complete marine power system in a megawatt-scale propulsion plant.

ABB’s own software together with Sintef Oceans vessel simulator capabilities will imitate and play back different load profiles and diesel/battery/fuel cell combinations, and tested in a scaled down laboratory environment.

The trials will explore more than the technicalities of scaling-up and optimized fuel cell/battery combinations alone.

“Sintef is contributing the hydrogen supply and infrastructure, while having a test lab gives ABB and Sintef Ocean the opportunity to increase in-house competence for integration, control and safety of fuel cell technology in marine applications,” says Anders Valland, research manager for maritime energy systems at Sintef Ocean. "Sintef has extensive capabilities with regard to fuel cell technology, maritime energy systems, electric power systems and power electronics, which gives us an edge in developing innovative solutions."

“Fuel cell technology is maturing quickly. These trials are expected to provide the platform for fuel cells to build on, so that they can take a position in the maritime sector that is competitive with fossil fuels,” says Jostein Bogen, product manager for energy storage and fuel cells at ABB Marine & Ports. “Finding unknowns and coping with them in a controlled environment, rather than risking surprises on board ship will be central to these trials.”

Another key objective will be establishing how to enhance the control of fuel cell plant in combination with energy storage, and how to optimize efficiency, reliability and the lifetime of fuel cell stacks.

“We will be seeking the decisive and practical solutions to develop fuel cell technology for main propulsion,” says Kristoffer Dønnestad, R&D engineer, ABB Marine & Ports, Trondheim. “Research will focus not only on fuel flow and fuel handling, but on what a hydrogen ship bunkering infrastructure might look like.”

The laboratory in Trondheim has been a key research resource for ABB, providing a focus for research into the fine details of its design innovations and helping to bring its most advanced maritime technologies to market, including ABB Onboard DC GridTM.

Using hydrogen as fuel, the proton exchange membrane fuel cells (PEM) separates electrons and protons, with protons passing through and electrons used as electrical output. Hydrogen is converted directly to electricity and heat without combustion. PEM fuel cells operate at a lower temperature, are lighter and more compact than their solid oxide counterparts.

ABB is a front-runner in sustainable marine e-mobility covering electric vehicle power, protection, control and installation. It has also had close involvement in ferry projects deploying battery power over short distances or for hybrid power plants to optimize ship efficiency. Battery power will certainly be key to meeting Norway’s target for zero ship emissions in the Fjords from 2026, according to Bogen.

Certainly, Bogen believes that deep-sea shipping will not have to wait until 2050 for the combustion-free generation of electricity, heat and clean water. “With the use of renewables to produce hydrogen for fuel cells and stored energy for batteries, the entire chain can be clean,” he says.

Source: https://www.aogdigital.com/subsea/item/7844-abb-sintef-to-test-hydrogen-fuel-cells

Comments

Popular posts from this blog

History of Fuel Cells

Although fuel cells were not investigated much during the 1800s and 1900s, the credit for the invention of the first fuel cells goes to William Grove. Intensive research on the topic began in the 1960s with NASA and only recently has commercialization of the technology begun to be conceivable. The image below is a summary of the history of the fuel cells. Before William Grove had invented the first fuel cell in 1839, William Nicholson and Anthony Carlislie came up with the process of using electricity of break water into hydrogen and oxygen in 1800. Willian, then, based his first fuel cell on their discovery. The device, called the gas battery or "Grove cell", was a combination of " electrodes in a series circuit, with separate platinum electrodes in oxygen and hydrogen submerged in a dilute sulfuric acid electrolyte solution" and it generated 12 amps of current at about 1.8 volts.  NASA began research on fuel cells for Project Gemini, which employed th

Solar Cells Losses and Design Part 1

We have discussed some important properties of light and characteristics of the radiation of light by our sun. In this post, we will focus on converting that light to electrical energy. This is done using the photovoltaic effect. Photovoltaics covers the direct conversion of sunlight into electrical energy, by a semiconductor material. The term photovoltaics is derived from the Greek word ‘phos’ which means light, and volt, which refers to electricity, specifically voltage. Volt is a reference to the Italian physicist Alessandro Volta, who invented the battery photovoltaic effect that was discovered in 1839, by the French physicist Emond Becquerel. At the age of 19 Becquerel created the first photovoltaic cell by illuminating platinum electrodes, coated with silver chloride in an acid solution. This device was the first to convert light into electricity. The photovoltaic effect occurs through the generation of a potential difference at the junction of two different material

Black Carbon is Found in the Amazon River after Forest Fires

In addition to the tracks of destruction in the forest, the fires in the Amazon leave traces in the Amazon River and its tributaries. Incomplete burning of tree wood results in the production of a type of carbon - known as black carbon - that reaches Amazonian waters in the forms of charcoal and soot and is transported to the Atlantic Ocean as dissolved organic carbon. An international group of researchers quantified and characterized, for the first time, the black carbon that flows through the Amazon River. The results of the study, published in Nature Communications magazine, showed that most of the material transferred to the ocean is "young," suggesting that it was produced by recent forest fires. "We found through radiometric dating analysis [a method that uses the radioisotope of natural carbon-14 occurrence to determine the age of carbonaceous materials up to about 60,000 years] and molecular composition that the largest proportion of the black carbon we found